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Fig. 71. Analysis of the I-electroretinogram. Upper: dark adapted. Lower:
light adapted. Duration of stimulus: 2 sec. (Granit and Riddell, J. Physiol., 81,

1. 1934.)
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Fig. 32. Chart of the receptive field of a single optic nerve fiber of the frog.
Each line encloses a retinal region within which the exploring spot light (relative
size shown above, left)—of an intensity the log. of which is given on the line—
produced a response from the fiber. On each line the indicated intensity was the
threshold; the set of curves constitutes a contour map of the distribution of the
retinal sensitivity to light with reference to this particular fiber. (Hartline, J. Opt.
Soc. Amer., 30, 239. 1940.)
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Fig. 34, Cat retina. Distribution of discharge patterns within receptive field
of ganglion cell (located at tip of electrode). Exploring spot was 0.2 mm. in
diameter, about 100 times threshold at center of field. Background illumination
approximately 25 m.c. In central region (crosses) “on" discharges were found,
while in diagonally hatched part only “ofi” discharges occurred (circles). In
intermediary zone (horizontally hatched) discharges were “on/ofl.” Note that
change in conditions of illumination (background, etc.) altered discharge pattern
distribution. (Kuffler, J. Newrophysiol., 16, 37. 1953.)
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Ficure 1. Three types of spectral response curves of
S potentials in the carp retina. a: luminosity type,
b: biphasic chromaticity type, c: triphasic chromaticity.
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T. TomrTa: The conelike potential, which I am cer-
tain is intracellular, is always negative in polarity.
This is in the direction to hyperpolarize the cells,
and is just the opposite to Dr. Hagins’ observation
on the squid outer segments. The contradiction,
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Ficure 8. Responses to two successive lights, first focal
(0.2 mm diameter spot light) and second diffuse. Upper:
Responses of a unit within the receptor layer, small in
size and having no substantial area effect. Lower: Those
from the bipolar cell layer, typical of the S potential,
having a distinct area effect.
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DISCUSSION

U. TaurM: Did you also find synapses of horizontal
cells with synaptic vesicles within the horizontal
cell?

E. Yamapa: No.
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Fieure 11. The isomerization of chicken iodopsin at — 195 C, by irradiation at 546 my to a steady-state mixture of iodopsin
and prelumiiodopsin (left); and the thermal reversion of pre-lumiiodopsin to iodopsin upon warming in the dark above
—180 C (vight). Left, curve 1: chicken iodopsin in glycerol-water at —195 C (Anax 575 mye). Curves 2 to 10: products of
irradiation at 546 mu for a total of 1, 2, 4, 8, 16, 32, 64, 128, and 256 sec. Right, curve I: iodopsin at —195 C; eurve 2:
product of irradiation at 546 my for 7 min (similar to curves 9 and 10, left). Curves 3 to 8: products of warming successively
in the dark to —180, —160, — 140, — 120, — 100, and —80 C, recooling each time to record the speetrum. The final spectrum
(curve 8) is essentially identical with the initial spectrum of iodopsin (curve 1). Both sets of curves exhibit an isosbestic
point at about 595 myu (Yoshizawa, unpublished).

ZOR)SEAREBMETAARTL U DIKEIL RIS DERER
( Hubbard, Bownds, &iR &Y)
WARMET (AR TOVIEBAZBRBE TIHAERGICEO>TILIL
SR ZTELS, BEZX LITAE, FREEKIEIERIGIZES>TITIZRES,

X8




FROM NEURON
TO BRAIN

EREBIRDOESE
(Dowling & Boycott, 1966K&Y))

IR O Z A (THRIRED
—1—AYDOEDKIEERIC
FOTHHENEDIZAHIH ?

X9

RODS AND
CONES

HORIZONTAL'N

CELLS

BIPOLAR
CELLS

AMACRINE
CELLS

GANGLION
CELLS

e e

T

LIGHT

ORGANIZATION OF PRIMATE RETINA. (After Dowling
and Boycott, 1966)



NOHINE D OWLING

1 EVHEEMNSHIA
NEEFZIN=ILEL,
EHEYHEEDS T
TRABEDREZRETR
CRCENEY
(Werblin & Dowling,
1969; Dowling, 1970
£b)

|10

4.17 Summary diagram correlating the syn-
aptic organization of the vertebrate retina with
some of the intracellularly recorded responses
from the mudpuppy retina. This figure attempts
to show how the receptive field organization of
the hyperpolarizing bipolar cells, off-center
ganglicn cells, and on—off ganglion cells is es-
tablished. The responses occurring in the
various neurons upon illumination (bar) of the
left receptor are indicated.

The hyperpolarizing bipolar cells and off-
center ganglion cells (G,) respond to direct
central illumination (left side) by hyperpolariz-
ing; to indirect (surround) illumination (right
side) by depolarizing. Note that the switch
from hyperpolarizing to depolarizing potentials
along the surround illumination pathway oc-
curs at the horizontal-bipclar junction.

The on-off ganglion cell (G,) receives strong
inhibitory input from amacrine cells; the figure
suggests that these cells receive their excita-
tory input from both amacrine and bipolar
cells. Inhibitory feedback synapses from ama-
crine cells onto the bipolar terminals are also
indicated.

R, receptors; H, horizontal cell; B, bipolar cells;
A, amacrine cells; G, ganglion cells; + with
open circles represents excitatory synapses;

— with filled circles represents inhibitory syn-
apses. Modified from Dowling (1970), with
permisson of J. B. Lippincott Company.
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The Vertebrate Retina
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FIGURE XIV-13

Intracellular recordings from a bipolar cell in the goldfish
retina; positive upwards. The cell was hyperpolarized by a
spot (upper) and depolarized by an annulus (lower). Horizontal
line below the response traces indicates roughly the period of
illumination. Both types of illumination were white lights of
about equal intensity. [From Kaneko (1970).]

J:é Z%MEEtﬁH@W%ﬁEEﬁi':J:éFS% FIGURE XIV-12

A montage photomicrograph of a bipolar cell in the goldfish

q:#:l‘ﬂiw;’kfé o EFI ’L\JEJ m*g*ﬁm@%%ﬁ.ﬁ%[igl*@ retina. The cell was recorded intracellularly, and was found

to have an on-center, off-surround receptive field. It was marked

ﬁ;mﬂﬂ—c"g—'c*(:ﬂéﬁ‘zghé 7:'){’ /r‘// ()[/Z (i%ﬂz by dye injection of Procion Yellow. [From Kaneko (1970).]
L7l (BF, 1970 &UY),
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13 RESPONSES OF A SIMPLE CELL in cat striate cortex to

0)1%: *ﬁﬂ’s]fd: “OFF” spots of light (A) and bars (C). The receptive field (B) has
A s #r a narrow central “on” area flanked by symmetrical antago-
TJEtEthh\b d~%) o nistic “off” areas. The best stimulus for this cell is a ver-

. tically oriented light bar (1° X 8°) in the center of its
(HUbeI & WleseL receptive field (fifth record from top in C). Other orienta-
1959;\- [,)) tions are less effective or ineffective. Diffuse light (third

record from top in A) does not stimulate. Illumination in-
dicated by bar. (After Hubel and Wiesel, 1959)
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RESPONSES OF A COMPLEX CELL in the striate cortex
of the cat. Cell responds best to a vertical edge. A. With
light on the left and dark on the right (first record), there

is an “on” response. With

there is an “off” response.

light on the right (fifth record),
Orientation other than vertical

is less effective. B. Position of border within field is not
important. Illumination of entire receptive field (bottom

record) gives no response.

(After Hubel and Wiesel, 1962)
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SYNTHESIS OF RECEPTIVE FIELDS. Hypoth-
esis devised by Hubel and Wiesel to explain
the synthesis of simple, complex, and hyper-
complex receptive fields. In each case lower
order cells converge to form receptive fields of
higher order neurons. A. Fields of simple cells
are elaborated by the convergence of many
geniculate neurons with concentric fields (only
four appear in the sketch). They must be ar-
ranged in a straight line on the retina accord-
ing to the axis orientation of simple receptive
fields. B. Simple cells responding best to a
vertically oriented edge at slightly different
positions could bring about the behavior of a
complex cell which responds well to a ver-
tically oriented edge situated anywhere within
its field. C. Each of the two complex cells
responds best to an obliquely oriented edge.
But one cell is excitatory and the other is in-
hibitory to the hypercomplex cell. Hence an
edge that covers both fields, as in the sketch,
is ineffective, while a corner restricted to the
left field would excite. (Hubel and Wiesel,
1962, 1965a)



VISION

DAVID MARR

Iy o DER:
ARIMEDHSHE
O X7 DFEH
DI=HDETHE R
(Marr & Hildreth,

1980&Y),

X|15

(a) (b)

Figure 2—18. A mechanism for detecting oriented zero-crossing segments. In (a),
if P represents an on-center geniculate X-cell receptive field, and Q an off-center,
then a zero-crossing must pass between them if both are active. Hence, if they are
connected to a logical AND gate as shown, the gate will detect the presence of the
zero-crossing. If several are arranged in tandem as in (b) and are also connected
by logical AND’s, the resulting mechanism will detect an oriented zero-crossing
segment within the orientation bounds given roughly by the dotted lines. Ideally,
we would use gates that responded by signaling their sum only when all their P
and Q inputs were active. (Reprinted, by permission, by D. Marr and E. Hildreth,
“Theory of edge detection,” Proc. R. Soc. Lond. B 204, pp. 301-328.)



